Role Mining

Mario Frank and Ian Molloy*

17th ACM Conference on Computer and Communications Security

CCS 2010, Chicago

Problem Definition

Role Engineering

- Top Down
 - From use cases and business properties
- Bottom Up
 - From existing access control data
- Bottom Up (automatic): Role Mining [KSS03]
- Hybrid Role Mining
 - Include business information to the role mining process

Top Down

- Manual analysis
- **Requires expertise** from security and business
- Conduct interviews, use cases, etc.
- Reluctant to outsource
- Error prone
- Expensive
- Slow (months)

Bottom Up

- Analyze the **existing** *data*
 - User-Permission assignments, attributes, usage logs, etc.
 - Apply data mining techniques to automate
- Fast (minutes-hours)
- Cheap
- Garbage in, garbage out
- Roles can be less intuitive than top-down engineering
 - Manual postprocessing (expensive)
 - Hybrid role mining

Input / Output

Input / Output

Example

Example

Input / Output

Hybrid Role Mining

Top-down information: e.g. organizational unit, seniority, location, ...

Business meaning:

- a) Same set of roles ⇒ similar business features [MCL+08], [CDO+09], [MLL+10]
- b) Same business features ⇒ similar set of roles [FSB+09]

Overview

- Problem definitions
- Quality measures
- Role Mining solutions / algorithms
 - Discrete optimization techniques
 - Probabilistic techniques
 - Hybrid role mining
- Open problems / future research

Definitions 1/3

Definition **BASIC RMP** [VAG07] :

Given a set of users USERS, a set of permissions PRMS and a user-permission assignment UPA, find an RBAC configuration RC that **minimizes the number of roles k** and **does not deviate from UPA**.

Definition δ -APPROX. RMP [VAG07] :

Given a set of users USERS, a set of permissions PRMS and a user-permission assignment UPA, find an RBAC configuration RC that **minimizes the number of roles k** and **deviates from UPA with less than δ assignmets**.

Definitions 2/3

Definition MIN-NOISE RMP [VAG07] :

Given a set of users USERS, a set of permissions PRMS and a user-permission assignment UPA, and the **number of roles k**, find an RBAC configuration RC with k roles, **minimizing the deviation between UPA and RC**.

Definition Min-Edge RMP [LVA08] :

Given a set of users USERS, a set of permissions PRMS and a user-permission assignment UPA, find an RBAC configuration RC that is **consistent** with UPA and **minimizes the number user-role assignments and role-permission assignments**.

Definitions 3/3

```
Definition INFERENCE RMP [FBB10]:
Let a set of users USERS, a set of permissions PRMS, a
user-permission relation UPA, and, optionally, part of
the top-down information TDI be given. Under
Assumption 1-3, infer the unknown RBAC configuration
RC*=(ROLES*, UA*, PA*).
```

Assumptions:

- 1. RC* generated UPA
- 2. RC* reflects top-down information (TDI)
- 3. Exceptions (errors) might exist.

Quality Measures

Reconstruction Accuracy

Closeness of RBAC configuration RC to user-permission assignment UPA [VAG07], [LVA08].

- **Coverage** of UPA assignments with RC
- Hamming distance between UPA and RC

Size measures

Compute how well RBAC configuration **compresses** the given access-control system.

- Number of roles |R| [VAG07]
- Number of assignments |UA|+|PA| [LVA08]
- Weighted structural complexity (wsc) [LMQ+07]

wsc(RC,w) = $w_1 |R| + w_2 |UA| + w_3 |PA| + w_4 |DUPA| + w_5 |t(RH)|$ with weights (w_1 , w_2 , w_3 , w_4 , w_5)

Comparison between true roles and inferred roles (true roles must be known!)

Compare number of roles [KSS03] : does not tell too much

Pairwise distance:

distance measure of your choice:
 exact match, Hamming distance , Jaccard coefficient.
 Caution! Avoid repeated comparison.

Mined roles

Mined roles

Find a global permutation of roles [SFB+09], [FBB10], [MLL+10]

Mined roles

Find a global permutation of roles [SFB+09], [FBB10], [MLL+10]

Mined roles

True roles

Generalization Test [SFB+09], [FBB10]

(true roles unknown)

Exploit that undelying structure **RC*** reproduces over the users, whereas the noise does not.

Closer to RC* \Rightarrow better prediction error

Generalization Test with TDI [FSB+09]

(true roles unknown)

Exploit that undelying structure **RC* reproduces over the users**, whereas the **noise does not**.

Generalization test (when TDI is given):

- 1. randomly split UPA in UPA⁽¹⁾ and UPA⁽²⁾
- 2. train roles R on UPA⁽¹⁾ and TDI⁽¹⁾
- assign users from UPA⁽²⁾ to roles based on x% of their permissions and TDI
- 4. predict remaining (100-x)% of permissions
- 5. compute prediction error

Closer to $RC^* \Rightarrow$ better prediction error

Discussion

- 1. Wich problem do we want to solve?
- 2. How should we validate solutions?

Summary statistics of role mining concepts [FBB10]

	formal definition	solution algorithm	quality measure
size of RBAC configuration	3	6	5
(number of roles, no. of assignments, etc.)			
linear combination of size measures		8	8
(wsc or "costs" with specified weights)			
comparison with original roles		3	9
(if known)		(some deployed roles are given)	
likelihood		3	
		1	
agreement with	1	3	5
top-down information			
0-consistency with UPA:	3	10	
required			
0-consistency with UPA:	2	8	
not required			

Discussion

- 1. Wich problem do we want to solve?
 - Inference RMP
 - Assume that there are roles to be found (if not, don't use role mining)
 - Roles should correspond to business (TDI)
- 2. How should we validate solutions?
 - Comparison with true roles (if known)
 - Generalization test (if not known)

Exact Role Mining

WSC Theoretical Results [MCL+1x]

- **NP**-Complete in general
 - SETCOVER
- Some trivial cases
 - Not interesting
- No polynomial approximation (**P**≠**NP**)
 - Edge-Concentration

{Fast,Complete}Miner [VAW06]

- Each user is an initial role
- Intersect initial roles
- Order roles by $\alpha * e(r) + n(r)$
- How many original roles are recovered?

Database Tiling [VAG07]

- Define the role mining problem (RMP)
 - Minimize the number of roles for UP
- Show RMP is NP-Complete
 - Reduce to database tiling

Database Tiling [VAG07]

	Рі	P 2	P 3	P 4	P 5	P6	P 7	RI
UI	I	I	0	0	I	I	I	R2
u2	0	0	0	I	I	I	I	
U3	I	I	0	I	I	0	0	R3
U4	I	I	0	0	0	0	0	

Database Tiling [VAG07]

	Ρι	P 2	P 3	P 4	P 5	P6	P 7
U	-	I	0	0	Ι	-	Ι
U 2	0	0	0	I	Ι	Ι	Ι
U3	I	I	0	I	I	0	0
U4	I		0	0	0	0	0

- Greedy Solution
- Tile that covers largest uncovered permissions
- Subproblem is NP-hard
Graph Optimization

Graph Optimization [ZRE07]

- Each user defines an initial role
- Role, user, permission node on a graph
- Perform pair-wise optimizations
- Minimize:
 - $\bullet |UA| + |PA| + |RH|$
 - $\bullet |R| + |UA| + |PA| + |RH|$

Repeat by pairing R3 with all current roles or end after k rounds

Repeat as Necessary

Maximal Bicliques

Biclique Cover [EHM+08]

- Users and permissions are vertexes
- Permission assignments are edges
- UP is a bipartite graph
- [Flat] RBAC is a tripartite graph
- Minimum biclique cover is RMP

Formal Concept Analysis and Lattices

Formal Concept Analysis

- Context triple (G,M,I)
 - $\bullet \ I \subseteq G \times M$
- G users, M permissions, I = UP
- Concept (X,Y)
 - $\bullet \ X \subseteq G, Y \subseteq M$
 - X and Y maximal bicliques
 - Arrange on a full lattice

	Permissions								
		1	2	3	4	5			
	А			\checkmark					
	В				\checkmark				
	С	\checkmark	\checkmark						
	D	\checkmark	\checkmark						
	E	\checkmark	\checkmark						
	F	\checkmark	\checkmark	\checkmark					
	G	\checkmark	\checkmark	\checkmark	\checkmark				
	Н	\checkmark	\checkmark	\checkmark	\checkmark				
	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
	J	\checkmark	\checkmark		\checkmark				
	K	\checkmark	\checkmark		\checkmark	\checkmark			

Users

Hierarchical Miner [MCL+08]

- Greedy algorithm to heuristically optimize
- Local restructuring when WSC beneficial
- Four rules to prune roles—Can be extended
- Stops when no restructures decrease WSC

Case I: No Users or Permissions

Case 2: No Permissions

Case 3: No Users

Case 4: Users and Permissions

Noisy Data & Policy Errors

Noise in Access Control

- I. Errors or Correctness
 - Type I Over assigned (not revoked)
 - Type II Under assigned (never assigned)
- 2. Applicability
 - RBAC is a compression
 - 80–20 Rule

Other "Noise"

- Missing and unknown values
- Redundant Attributes
 - e.g., US, USA, United States
- Multiple Accounts
 - e.g., imolloy, immolloy, molloyim
- Artificial Users
 - e.g., www-data, root

Approaches

- Rank-Reduced Matrix Factorization
- Detect noise (errors) and anomalies
- Perform prediction of unknown values
- Leverage attributes and additional relations

Matrix Decomposition

- $UP \in \{0,1\}^{n \times m}$
- $A \in \mathbb{R}^{n \times k}, \ B \in \mathbb{R}^{m \times k}$
- $UP \approx AB^T$ $g: \mathbb{R}^{n \times m} \to \{0, 1\}^{n \times m}$

Х

Х

		PI	P2	P3
	RI	Ι	Ι	0
	R2	0	Ι	Ι

PA

Decomposition Models

- Singular Value Decomposition (SVD)
- Non-Negative Matrix Factorization (NMF)
- Logistic PCA (LPCA)

- Disjoint Decomposition Model (DDM)
- Multi-Assignment Clustering (MAC)

Probabilistic Role Mining

Goal of Probabilistic Role Mining

From roles to permissions

Maximum-likelihood principle

Select the RBAC configuration that maximizes p(UPA|RBAC).

From Generation Process to Model

From Generation Process to Model

Generation process:

Boolean disjunction of all roles a user is assigned to.

$$x_{ij} = \bigvee_k \left[z_{ik} \wedge u_{kj} \right]$$

Example for a user with 3 roles:

From Generation Process to Model

Replace **binary** permissions by **probabilities** [FBB08] : **role-permission assignment** ⇒ **P{perm. is assigned to role}**

Example for a user with 3 roles:

The Model

- Describe the problem with a probabilistic model. [SFB+09]
- Infer the model parameters that make UPA most likely.

p(UPA|RBAC)

Great for Infering Underlying Roles

Model variants

 $\mathbf{x} = \mathbf{z} \otimes \mathbf{u}$

 $\mathbf{x} = \mathbf{z} \otimes \mathbf{u} \otimes \mathbf{y}$

Generic class of models [FBB08]

General

Plain RBAC

Disjoint Decomposition

$$p(\mathbf{x} \mid \mathbf{z}, \mathbf{y}) = \prod_{i,j} \left[1 - \prod_{k,l} p(\overline{u_{kl}})^{y_{lj} z_{ik}} \right]^{x_{ij}} \left[\prod_{k,l} p(\overline{u_{kl}})^{y_{lj} z_{ik}} \right]^{1 - x_{ij}}$$

Disjoint Decomposition Model (DDM)

Original assignments sorted according to roles

DDM @ work

5000 users on 1323 permissions +740 job-functions

Assessment via job-code entropy (business meaning):

Hybrid Role Mining

- User's department, location, title, etc.
- Permission's object, right, granularity, etc.
- Give roles semantic meaning
- Correct recurring errors

Model-Based Hybrid Role Mining [FSB+09]

Combine two objectives:

1) The negative log-likelihood

$$R_{i,\mathcal{L}}^{(ll)} = -\log\left(\prod_{j} p_{M}\left(x_{ij} \mid z_{i\cdot}, \beta, r, \epsilon\right)\right)$$

2) Business properties objective function Example: pairwise costs

$$R^{(S)} = \frac{1}{N} \sum_{s} \sum_{i,i'} w_{is} w_{i's} \sum_{k} z_{i'k} \left(1 - 2z_{i'k} z_{ik} \right)$$

Combined objective function: $R = R^{(ll)} + \lambda R^{(S)}$

Collective Matrix Factorization [SG08]

- $UAA \in \mathbb{R}^{\ell \times n}$ $UP \in \{0, 1\}^{n \times m}$
- $A \in \mathbb{R}^{n \times k}, \ B \in \mathbb{R}^{m \times k}, \ C \in \mathbb{R}^{\ell \times k}$
- $UP \approx AB^T$ $UAA \approx CA^T$ Share Matrix A
- $\alpha D(UP \parallel AB^T) + (1 \alpha)D(UAA \parallel CA^T)$

UAA	UI	U2	U3	U4	U5	U6
AI		0	-			Ι
A2	0	I	Ι	Ι	Ι	Ι

	=	
AR	RI	R2
AI	I	0
A2	0	Ι

UP	ΡI	P2	P3	
UI	-	-	0	
U2	0		Ι	
U3	I	I	Ι	
U4	I	I	Ι	
U5	I	I	Ι	
U6	Ι	Ι	Ι	

UA RI R2 UI 0 I U2 0 L U3 I L U4 I L U5 L L U6 I I

=

 PA
 PI
 P2
 P3

 R1
 1
 1
 0

 R2
 0
 1
 1

Which Attributes?

- All [MCL+08]
- Entropy Reduction [FSB+09]

•
$$\frac{h(p_i) - h(p_i \mid A)}{h(p_i)}$$

- h Shannon Entropy
- Select the greatest entropy reduction
- Balance attribute granularity

Prediction with Attributes [MLL+10]

- Attributes improve predictive performance
- Clusters have more semantic meaning
- Organization outperforms Level

Attributes [MLL+10]

Attribute	Order	Uncert.	Pred. Improv.
Manager	298	2186.03	17.5%
Department	192	1931.95	24.4%
Title	527	I 878.5 I	15.2%
Location	53	1316.92	17.6%
Organization	12	789.46	22.5%
Level	17	170.34	17.3%
Contractor	2	78.44	I 2.0%
	*		

What is Next?

Technical Challenges

- Data mapping and enforcement
 - Definition of a Permission
- Generating Role Names
- Certification and recertification of roles
- Avoid model-mismatch (Probabilistic Role Mining)
 - Model selection
- Deal with structured errors
 - Add feedback loop
- Errors vs. intended exceptions
 - Add plausibility analysis
- Dataset Size

- Size of the datasets
 - Millions of users and permissions
 - Running times, memory, etc.
- Partitioning the data
- Conceptually limited by administrator
 - Visualization

Example Dataset Sizes

	Users	Perms	UP
Anon.	3,068	3,133	71,596
Customer	854	885	6,753
Swiss Bank	22,353	1,786	
HP	3,485	10,127	185,294

380,000+ Users?

Handle 500,000,000+ Users?

Future Research

- Dynamic Data
 - Historical data, user and role evolution
- Compliance, PCI, SOX, HIPPA, etc.
- **Provision new users**, applications
- Permission granularity and paramaterized roles

References

- [CDO+09] A. Colantonio, R. Di Pietro, A. Ocello, and N.V. Verde. A Formal Framework to Elicit Roles with Business Meaning in RBAC Systems. SACMAT, 2009.
- [EHM+08] A. Ene, W. Horne, N. Milosavljevic, P. Rao, R. Schreiber, and R. Targan. Fast Exact and Heuristic Methods for Role Minimization Problems. SACMAT, 2008.
- [FBB08] M. Frank, D. Basin, and J. Buhmann. A Class of Probabilistic Models for Role Engineering. CCS, 2008.
- [FBB10] M. Frank, J. Buhmann, and D. Basin. **On the Definition of Role Mining**. SACMAT, 2010.
- [FSB+09] M. Frank, A. Streich, D. Basin, and J. Buhmann. A Probabilistic Approach to Hybrid Role Mining. CCS, 2009.
- [KSS03] M. Kuhlmann, D. Shohat, and G. Schimpf. Role mining Revealing Business Roles for Security Administration using Data Mining Technology. SACMAT, 2003.
- [LMQ+07] N. Li, T. Li, I. Molloy, Q. Wang, E. Bertino, S. Calo, and J. Lobo. Role mining for engineering and optimizing role based access control systems. Technical report, 2007.
- [LVA08] H. Lu, V. Vaidya, and V. Atluri. **Optimal Boolean Matrix Decomposition: Application to Role Engineering**. ICDE, 2008.
- [MCL+08] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo. Mining Roles with Semantic Meanings. SACMAT, 2008
- [MCL+1x] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo. Mining Roles with Multiple Objectives. TISSEC, accepted 26 April, 2010.
- [MLL+09] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo. Evaluating Role Mining Algorithms. SACMAT, 2009.
- [MLL+10] I. Molloy, N. Li, J. Lobo, Y. Qi, and L. Dickens. Mining Roles with Noisy Data. SACMAT, 2010
- [SFB+09] A. Streich, M. Frank. D. Basin, and J. Buhmann. Multi-Assignment Clustering for Boolean Data. ICML, 2009.
- [SG08] A. Singh, and G. Gordon. Relational Learning via Collective Matric Factorization. KDD, 2008.
- [VAG07] J. Vaidya, V. Atluri, and Q. Guo. The Role Mining Problem: Finding a Minimal Descriptive Set of Roles. SACMAT, 2007.
- [VAW06] J. Vaidya, V. Atluri, and J. Warner. RoleMiner: Mining Roles using Subset Enumeration. CCS, 2006
- [ZRE07] D. Zhang, K. Ramamahanarao, and T. Ebringer. **Role Engineering using Graph Optimization**. SACMAT, 2007.